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In this paper, we show by two-dimensional numerical simulation that it is possible to control
vortex shedding behind a circular cylinder by inserting two small vortex perturbations in the
#ow. The control has the e!ect of suppressing vortex shedding, making the #ow converge
toward a stable, symmetric bubble at Reynolds number Re"100. Similar results are obtained
at higher Reynolds number values, e.g. Re"1000, although the required strength of the control
vortices is higher than at Re"100. At all Reynolds numbers investigated here, it is also possible
to choose the control parameters in order to alter vortex shedding by generating a reversed
Karman vortex street. Our control technique is inspired by the linear stability analysis of
a potential vortex model which we report in the present manuscript. The model is used here to
give us insight into the control problem and the similarity between the model and the real,
viscous #ow remains qualitative. ( 2000 Academic Press
1. INTRODUCTION

VORTEX SHEDDING CONTROL has been the object of intensive research over recent years.
Arguments motivating the investigation of this issue are numerous. For instance, the
shedding of vortices from alternate sides of blu! bodies is associated with strong periodic
transverse forces that can damage the body. Preventing the instability from occurring
would thus lead to the suppression of vortex-induced vibrations. It may also lead to drag
reduction, a desired feature in many applications.

A wide variety of techniques have been applied, such as the use of a splitter plate (Roshko
1955; Grove et al. 1964), base bleed (Wood 1967; Bearman 1967), forced cylinder vibrations
(Wehrmann 1965; Berger 1967; Schumm et al. 1994), wake heating (Noto et al. 1985; Mori
et al. 1986), a small secondary cylinder (Strykowski & Sreenivasan 1990; Strykowski
& Hannemann 1991), rotary oscillation of a cylinder (Tokumaru & Dimotakis 1991), and
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a #apping foil (Gopalkrishnan et al. 1994) among others [see, e.g., the review by Zdrav-
kovich (1981)]. Feedback control techniques have also been developed (Ffowes Williams
& Zhao 1989; Roussopoulos 1993). The list is by no means exhaustive, and the interested
reader should consult the recent review on #ow control by Gad-el-Hak (1999).

Some of these #ow control techniques are successful at controlling or suppressing vortex
shedding through a large modi"cation (e.g. a splitter plate of length 10a or a #apping
foil of chord 4a, where a is the radius of the cylinder). Some other approaches, such as the
insertion of a small cylinder in the wake, are small local modi"cations but are usually restricted
to a small range of Reynolds numbers. In many cases, control techniques are empirical.

The implementation of an e$cient control strategy requires the understanding of the
origin of the physical phenomenon one wants to control. For this purpose, the derivation
and analysis of a model, preferably a low-dimensional dynamical system which can capture
the essential features of the physics and be understood relatively easily, should be of great
help. During the last decade, the use of low-dimensional dynamical systems as powerful
tools to model #uid mechanics phenomena has attracted much attention [see, for instance,
Aubry et al. (1988), Sanghi & Aubry (1993), Coller et al. (1994)]. The present paper is based
on such simple ideas applied to the origin of vortex shedding and its control.

Since vortex shedding is born through the instability of the recirculating bubble of
counter-rotating, twin vortices, understanding the origin of vortex shedding should neces-
sarily involve the investigation of the instability the symmetric bubble undergoes. We have
recently studied the stability property of the recirculating bubble by reconsidering the
low-dimensional, point vortex model "rst derived by FoK ppl (1913). This model consists
of a uniform oncoming #ow, a pair of point vortices symmetrically located with respect
to the centerline behind the cylinder, and inner vortices placed to satisfy the boundary
condition on the body. FoK ppl found steady solutions of this model and studied their linear
stability with respect to particular perturbations. We have carried out the stability analysis
with respect to any type of perturbations and have found the explicit shape of the
eigenvector associated with each eigenvalue (Tang & Aubry 1997). The result of our
analysis is that the steady pair of twin vortices is stable to some asymmetric perturbation,
and unstable to some other asymmetric perturbation. The speci"c shape of the asymmetric
perturbation responsible for the instability is thus crucial. We have then shown that the
stability properties of the model mimic the stability characteristics of the wake #ow
simulated by numerical integration of the Navier}Stokes equations. In other words,
a perturbation along the stable subspace of the model decays, while a perturbation along
the unstable subspace is ampli"ed.

After understanding the nature of the instability, one seeks to control it. In this paper,
we investigate whether the linear instability can be suppressed in the model. We
show here that this is possible by adding two small, "xed control point vortices. We then
show that the insertion of additional small sources of vorticity also a!ects the numerically
simulated viscous #ow. Our idea of controlling a wake #ow potential model is similar to
that explored by Cortelezzi et al. (1994), Cortelezzi (1996) for the control of wake #ows past
a plate.

Our paper is organized as follows. In Sections 2 and 3, we recall the point vortex model,
its linear stability analysis and its relation with the numerically simulated #ow. In Section 4,
we introduce two small control vortices in the model and "nd that this insertion
is responsible for the presence of a neutrally stable equilibrium point. We then turn to
the numerical simulation of the viscous #ow past a cylinder in Section 5 and show that
the introduction of vorticity sources in the #ow can either suppress vortex shedding or
generate a reversed Karman vortex street. We "nally discuss our "ndings and conclude in
Section 6.
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2. MODEL FOR THE INSTABILITY OF THE SYMMETRIC BUBBLE

It is well known that if a circular cylinder starts moving from rest, twin vortices spinning
in opposite direction form behind the cylinder soon after the motion begins. These
vortices grow and become more and more elongated as time increases until they reach
their maximal size. At low Reynolds number, the asymptotic state consists of a two-
dimensional elongated bubble which is stable and invariant under re#ection symmetry
through the centerline, that is it satis"es u (x, y, t)"u (x, !y, t), v (x, y, t)"!v(x, y, t) at
any time. The bubble of vortices develops into a time-dependent oscillating wake regime
in which the bubble remains attached to the body at about Re"48}50 or breaks down
into a Karman vortex street at higher Reynolds number. Here, the previous instant-
aneous symmetry is broken, but the #ow satis"es a space}time symmetry group in the
sense that u(x, y, t)"u (x, !y, t#¹/2), v(x, y, t)"!v (x, !y, t#¹/2) , where ¹ is
the time period of the #ow. In other words, one has to act on both the time and space
variables in order to recover the invariance of the #ow, see more details on this particular
symmetry, as well as other space}time symmetries in Aubry et al. (1992), Aubry & Lima
(1995). In this paper, we concentrate on the instantaneous symmetry-breaking instability
and its control.

In order to understand the (instantaneous) symmetry-breaking instability, we have
modeled the symmetric bubble by means of twin-point vortices behind the cylinder,
two inner vortices placed to satisfy the boundary condition on the body and the
uniform oncoming #ow (FoK ppl 1913; Tang & Aubry 1997). The twin-point vortices behind
the body are symmetric images of one another by re#ection through the centerline. A
sketch of the model can be found in Figure 1(a), which also shows the location of the
steady solutions on two (symmetric) curves. The linear stability analysis (Tang &
Aubry 1997) shows that the four-dimensional dynamical system has one strictly positive
eigenvalue, j

1
'0, one strictly negative eigenvalue j

2
(0 and two eigenvalues, j

3
and j

4
,

whose real parts are zero. The unstable and stable eigenvectors take the following expres-
sions:

V
1
"G

a
1

!a
1 H, V

2
"G

!b
1
b
1 H, (1)

where a and b are positive real numbers. The eigenvectors corresponding to j
3,4

in the
real space span a symmetric center eigenspace. Figure 1(b) shows that the eigen-

value j
1

decays rapidly to zero with the distance r
1
"Jx2

1
#y2

1
of the vortices to the

center of the body. In Figure 1(c), we have sketched the mode V
1

spanning the
unstable eigenspace, the mode V

2
spanning the stable eigenspace, and the modes V

3
and V

4
spanning the center eigenspace. Owing to their shapes, V

1
and V

2
are referred to

as the asymmetric divergent mode and the asymmetric convergent mode, respectively.
Similarly, V

3
is called the symmetric divergent mode and V

4
the symmetric convergent

mode. In the next section, we show the relation between this "nding and the symmetry-
breaking instability in the numerically simulated viscous #ow (Tang & Aubry 1997).
The numerical test consists in inserting a small vorticity perturbation on the centerline
either very close to the body or far away downstream. In the "rst case, the induced
velocity perturbation on the twin vortices is close to the stable eigenmode V

2
, as shown in

Figure 2(a), while in the second case, it is close to the unstable eigenmode V
1
, as sketched in

Figure 2(b).



Figure 1. Low-dimensional model representing twin point vortices and their stability property
behind a circular cylinder: (a) sketch of the symmetric vortex pair and plot of the curve of equilibria in
the model; (b) absolute value of the unstable and stable eigenvalues j

1
, j

2
("!j

1
) as a function of the

distance r
1
to the center of the cylinder; (c) con"guration of the four vectors V

1
, V

2
, V

3
and V

4
(top) and

their opposite companions !V
1
, !V

2
, !V

3
and !V

4
(bottom) [from Tang & Aubry (1997)].
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Figure 2. Sketch showing the small vorticity perturbation introduced in the #ow and the two main
twin vortices of the recirculating bubble: (a) the perturbation is close to the cylinder, so that the
associated velocity disturbance applied to the twin vortices is of the asymmetric convergent type; (b)
the perturbation is far away from the cylinder, so that the associated velocity disturbance is of the

asymmetric divergent type.
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3. NUMERICAL SIMULATIONS

Before presenting our test on the #ow stability, we recall our numerical simulation of the
impulsively started #ow past a circular cylinder.

3.1. SIMULATION METHODOLOGY

The governing equations considered in this paper are the two-dimensional, incompressible
Navier}Stokes equations in the vorticity/streamfunction formulation. A "nite di!erence
method is used to simulate the #ow in an exponential-polar coordinate system (m, g) de"ned
by rJ"ae2nm and hI "2ng, where (rJ , hI ) are the polar coordinates. This exponential mapping
allows the code to deal with a very large physical domain so that the well-known blockage
e!ect can be avoided. The Navier}Stokes equations are subject to the no-slip boundary
conditions on the surface of the body and the two-dimensional potential #ow at in"nity.
The impulsive start is simulated by imposing the potential #ow as the initial condition
everywhere, except on the body. Our scheme is adaptive in the sense that the boundary for
the vorticity transport equation moves farther and farther away from the body as the
vorticity is transported outward. The numerical scheme, second-order in space and "rst-
order in time, is an alternating-direction-implicit (ADI) algorithm for the vorticity transport
equation and a fast Fourier transform for the Poisson equation. The grid chosen in this
paper has, unless speci"ed otherwise, 1200]512 points and double precision is used.
Details of the numerical method can be found in Tang & Aubry (1997). Our results at
Reynolds number Re"20, 40, 100, 500, 1000, are in very good agreement with others'
theoretical results (Collins & Dennis 1973; Bar-Lev & Yang 1975), experimental results
(Tritton 1959; Williamson 1995) and numerical results (Zhang et al. 1995; Franke et al. 1990)
for both the transient #ow and the asymptotic regime. For instance, Figure 3 shows the time
history of the drag coe$cient at early times and the vorticity contours of the Karman vortex
street at Re"100. Our "ndings agree with the theoretical results of Collins & Dennis (1973)
and Bar-Lev & Yang (1975) for the early stage and with the Digital Particle Image



Figure 3. Flow at Re"100: (a) drag coe$cient versus time from this study and comparison with
others' results; (b) vorticity contour plot for !2)5)u)2)5, with a spacing of 0.1 at time t"650,
visualizing the Karman vortex street. The plot shows a remarkable agreement with those computed

by Henderson (1994); see also Williamson (1995).
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Velocimetry (DPIV) measurements of Gharib, Hammache, Maheo and Dabri and
the numerical computations of Henderson (1994) [see also Williamson (1995)]. The mean
value of the drag coe$cient, the amplitude of the lift coe$cient and the Strouhal number in
the Karman vortex street can be found in Tang & Aubry (1997). They all compare well with
other numerical and experimental data.

We use two distinct algorithms for computing the forces exerted on the body, which we
now discuss.

3.1.1. Algorithm 1

The time-dependent drag coe$cient (C
d
) and lift coe$cient (C

l
) on the body can be

computed according to the formulation

!C
d
(t)#iC

l
(t)"

2

Re
iP

1

0

e*2ng C2nu(t)!
Lu
Lm

(t)Dm"0

dg. (2)
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This formula can be easily implemented since we know the vorticity "eld at each time
step.

3.1.2. Algorithm 2

The body force can also be computed from the control volume formulation of the
momentum equation. Hereafter, cv and cs refer to the control volume and the control
surface, respectively. Our control volume is chosen to be a coaxial cylinder of large radius
containing the body. The net force exerted on the body by the #uid can then be expressed as

F
s
"F

cs
!

d

dtPP
cv

uodv!P
cs

uou)nds, (3)

where F
cs

denotes the surface force. Note that this technique requires the knowledge of the
full velocity "eld in the control volume, while the vorticity #ux is needed only on the control
surface.

3.2. STABILITY PROPERTY OF THE NUMERICALLY SIMULATED FLOW

In this paragraph, we recall results obtained in Tang & Aubry (1997). We introduce
vorticity perturbations in the #ow in the manner described in Figure 2 (see Section 2). Our
numerical tests are performed at Re"56. The "rst experiment consists in introducing
a vorticity perturbation of circulation C

p
"u

p
dA"0)003 at time t"100 at the location

(1)1, 0)0) on the centerline, and relaxing it immediately after this. We recall that the induced
velocity perturbation on the twin vortices is close to the stable eigenmode V

2
of the model.

The second experiment consists in introducing the same vorticity perturbation in the
#ow, but much farther downstream, that is at the location (10)1, 0)0) . In this case, the
induced velocity perturbation on the twin vortices is close to the unstable eigenmode V

1
of

the model. Figure 4 shows the time history of the lift coe$cient without perturbation and
with the two types of perturbations previously described. It is clear that the upstream
perturbation decays while the downstream one grows. Consequently, the downstream
perturbation having a non-zero component along the unstable eigenvector V

1
triggers the

instability, thus showing the similarity between the stability property of the model and that
of the numerically simulated #ow. In the next sections, we concentrate on controlling the
instability "rst in the model and secondly in the viscous #ow.

4. CONTROL MODEL FOR THE SYMMETRY-BREAKING INSTABILITY

In order to control the linear instability of the vortices in the model of Section 2, we recall
that the unstable eigenspace is one-dimensional and that the corresponding (real) eigen-
value tends to zero rapidly as the distance of the vortices from the center of the cylinder
increases [see Figure 1(b)]. This point leads us to wonder whether one can use a small e!ort
to change the sign of the square of the eigenvalues j2

1,2
from positive to negative in order to

eliminate the unstable eigenspace and therefore neutrally stabilize the symmetric bubble of
vortices.

4.1. CONTROL MODEL AND ITS STABILITY ANALYSIS

A control approach is investigated by designing a new dynamical system consisting of the
previous vortex model to which we add a pair of symmetric control vortices that are



Figure 4. Time history of the lift coe$cient from the numerical simulation at Re"56: (i) without
any arti"cial perturbation (dotted line), (ii) with the vorticity perturbation introduced at x

1
"10)1

(solid line), and (iii) with the vorticity perturbation introduced at x
1
"1)1 (dashed line). (a) Lift

coe$cient; (b) zoom of (a). It is clear that the asymmetric divergent perturbation grows while the
asymmetric convergent perturbation decays [from Tang & Aubry (1997)].
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maintained at the locations z
c
"x

c
#iy

c
and z6

c
, respectively (see Figure 5). Hereafter,

C
c
denotes the circulation of the upper control vortex, !C

c
being the circulation of the

lower control vortex (C
c
'0). The original vortices located at z

1
and z

2
, of circulation !C

and C (C'0) , respectively, are referred to as the twin vortices, since they represent the
recirculating bubble in the real #ow. Under the assumption that the velocity of the
oncoming #ow is ;

=
"1 and that the radius of the cylinder is also equal to 1, the new



Figure 5. Sketch showing the twin vortices at positions z
1
and z

2
and the control vortices located at

positions z
c
and z6

c
in the control model.

Figure 6. Location of the equilibrium positions for the control model whose control vortices have
a circulation equal to C

c
/2n"0)03: (a) the control vortices are located at x

c
"4)294, y

c
"$2)031; (b)

the control vortices are located at x
c
"5)392, y

c
"$1)35. Equilibrium curve of the (uncontrolled)

original model (squares), equilibrium curve 1 (triangles), equilibrium curve 2 (circles), equilibrium
curve 3 (diamonds). We have indicated the values of the circulation C/2n of the twin vortices

corresponding to each equilibrium.
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four-dimensional dynamical system (whose variables are z
1
"x

1
#iy

1
and z

2
"x

2
#iy

2
)

is given by the equations

dz6
1

dt
"1!

1

z2
1

#

C

2ni

1

z
1
!1/z6

1

!

C

2ni

1

z
1
!1/z6

2

#

C

2ni

1

z
1
!z

2

#

C
c

2ni

1

z
1
!z

c

!

C
c

2ni

1

z
1
!z6

c

!

C
c

2ni

1

z
1
!1/zN

c

#

C
c

2ni

1

z
1
!1/z

c

, (4)

dz6
2

dt
"1!

1

z2
2

!

C

2ni

1

z
2
!1/z6

2

#

C

2ni

1

z
2
!1/z6

1

!

C

2ni

1

z
2
!z

1

#

C
0

2ni

1

z
2
!z

c

!

C
c

2ni

1

z
2
!z6

c

!

C
c

2ni

1

z
2
!1/zN

c

#

C
c

2ni

1

z
2
!1/z

c

. (5)

Here z
2

should be replaced by z6
1

for symmetric solutions, particularly for symmetric "xed
points. The second equation of motion is identical to the "rst one in which z

1
is replaced by

z
2
, C by !C and vice versa.
The control system is more complex than the original model of Section 2 due to the fact

that it has three extra independent parameters, which are the characteristics of the control
vortices x

c
, y

c
and C

c
. Since it is beyond the scope of this work to study the dynamics in this

three-dimensional parameter space, we restrict our analysis to a few relevant cases.
We concentrate on "nding the symmetric equilibria of the new model by solving the

equations dz6
1
/dt"0, z

2
"z6

1
, (where dz6

1
/dt is given by equation (4)], the characteristics

x
c
, y

c
and C

c
of the control vortices and the circulation C of the twin vortices being

considered as parameters. For this, we proceed as follows. Given x
c
, y

c
, C

c
and C, we obtain

the real part, u, and the imaginary part, v, as functions of x
1
and y

1
, from the right-hand side

of equations (4) and (5). We then plot the zero streamwise and zero transverse velocity lines
corresponding to u"0 and v"0, respectively. The equilibria we are seeking are located at
the intersection points between the two curves. We observe that if C

c
is too small, there is

only one equilibrium similar to that of the original vortex model, and its stability properties
are the same as those described in Section 2. If C

c
is increased, but still small compared to C,

the control vortex model generates (at least) three equilibria. Figure 6(a) shows the
three curves of equilibria corresponding to the set of parameters (x

c
, y

c
)"(4)294, 2)031),

C
c
/2n"0)03 and di!erent values of C/2n (C/2n"1)6, 2, 3, 4, 5). The curves represented by

triangles, circles, diamonds are referred to as Curve 1, Curve 2 and Curve 3, respectively.
The squares correspond to the equilibria of the original model. Curve 1 is analogous to the
curve of "xed points obtained in the original point vortex model of Section 2. The other two
points are new equilibria strictly due to the presence of the control vortices. Figure 6(b)
shows similar results for the set of parameters (x

c
, y

c
)"(5)392, 1)35), C

c
/2n"0)03 and

di!erent values of C/2n (C/2n"1, 2, 3, 4, 5).
We now carry out the linear stability analysis of the "xed points and derive the equations

of motion governing the dynamics of the perturbations around each equilibrium. Hereafter,
x
1
, y

1
denote the coordinates of the "xed point considered. The linear dynamics of the

perturbation is governed by the set of ordinary di!erential equations (ODE):

d

dt G
x@
1

y@
1

x@
2

y@
2
H"C

A B c d
E !A f c
c !d A !B

!f c !E !AD G
x@
1

y@
1

x@
2

y@
2
H , (6)
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where

A(x
1
)"a (x

1
)#P

r
(x

1
), (7)

B (x
1
)"b (x

1
)!P

i
(x

1
), (8)

E (x
1
)"e (x

1
)!P

i
(x

1
), (9)

with

P
r
(x

1
)#iP

i
(x

1
)"!

C
c

2ni

1

(z
1
!z

c
)2
#

C
c

2ni

1

(z
1
!z6

c
)2

#

C
c

2ni

1

(z
1
!1/zN

c
)2
!

C
c

2ni

1

(z
1
!1/z

c
)2

, (10)

a (x
1
)"

2(x3
1
!3x

1
y2
1
)

r6
1

#

Cx
1
y
1

n (r2
1
!1)2

!

Cx
1
y
1
(r4
1
!1)

n[(x2
1
!y2

1
!1)2#4x2

1
y2
1
]2

, (11)

b(x
1
)"

!2(y3
1
!3x2

1
y
1
)

r6
1

!

C(x2
1
!y2

1
)

2n (r2
1
!1)2

#

C

2n (r2
1
!1)2

#
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1
(r2
1
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1
(r2
1
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1
!y2

1
!1)2#4x2

1
y2
1
]2
#

C

8ny2
1

, (12)

c(x
1
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!2Cx
1
y
1
(x2

1
!y2

1
!1)

n[(x2
1
!y2

1
!1)2#4x2

1
y2
1
]2

, (13)

d(x
1
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1
!y2

1
!1)2!4x2

1
y2
1
]

2n[(x2
1
!y2

1
!1)2#4x2

1
y2
1
]2

!

C

8ny2
1

, (14)

e(x
1
)"

!2(y3
1
!3x2

1
y
1
)

r6
1

!

C(x2
1
!y2

1
)

2n (r2
1
!1)2

!

C

2n (r2
1
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#
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1
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1
!1)2!y2

1
(r2
1
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2n[(x2
1
!y2

1
!1)2#4x2

1
y2
1
]2
#

C
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1

, (15)

f (x
1
)"

C[(x2
1
!y2

1
!1)2!4x2

1
y2
1
]

2n[(x2
1
!y2

1
!1)2#4x2

1
y2
1
]2
!

C

8ny2
1

. (16)

Note that A, B, c, d, E, f are functions of r
1
"(x2

1
#y2

1
)1@2 such that x

1
and y

1
are related

(since they are the coordinates of one equilibrium). We then retain the x
1
-dependency only,

i.e. A(x
1
), B (x

1
), c(x

1
), d (x

1
), E (x

1
), f (x

1
) . While such dependency should be kept in mind, it

is often dropped to lighten the notation. Here, a, b, c, d, e and f are related to the twin
vortices as they are in the original vortex model of Section 2, while the existence of the extra
terms P

r
and P

i
is strictly due to the control vortices. The Jacobian matrix of equation (6)

reduces to the Jacobian matrix of the original model if P
r
and P

i
are set to zero.
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We now diagonalize the Jacobian matrix and obtain the following eigenvalues and
eigenvectors

(jc
1,2

)2"(A!c)2#(B#d) (E!f ), Vc
1,2

"G
B#d

j
1,2

!A#c
1

!(B#d)

j
1,2

!A#c
1 H (17)

(jc
3,4

)2"(A#c)2#(B!d) (E#f ), Vc
3,4

"G
d!B

j
3,4

!A!c
!1

d!B

j
3,4

!A!c
1 H . (18)

We can rewrite the eigenvalues as

(jc
1,2

)2"(a!c)2#(b#d ) (e!f )

#P2
r
#P2

i
#2(a!c)P

r
!P

i
(b#d#e!f ), (19)

(jc
3,4

)2"(a#c)2#(b!d ) (e#f )

#P2
r
#P2

i
#2(a#c)P

r
!P

i
(b!d#e#f ). (20)

As expected, the eigenvalues (20) and (21) coincide with the eigenvalues of the original
model if P

r
and P

i
are set to zero. The extra terms due to the presence of the control vortices

involve both P
r
and P

i
which are proportional to the circulation C

c
of the control vortices.

Our aim is now to make (jc
1,2

)2 negative in order to eliminate the one-dimensional unstable
eigenspace of the original model (while keeping (jc

3,4
)2 negative). One can see that this goal

may be reached if the circulation C
c
of the control vortices is not too small.

The stability analysis of the three previous equilibria corresponding to the set of
parameters (x

c
, y

c
)"(2)908, 1)375), C

c
/2n"0)048 and C/2n"1)6 is summarized below.

Equilibrium 1:

jc
1
"0)4504, Vc

1
"G

0)6559

1

!0)6559

1 H, unstable subspace, (21)

jc
2
"!0)4504, Vc

2
"G

!0)2174

1

0)2174

1 H, stable subspace, (22)

(jc
3,4

)2"!0)4056, center subspace. (23)
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Equilibrium 2:

jc
1
"0)3422, Vc

1
"G

0)2168

1

!0)2168

1 H, unstable subspace, (24)

jc
2
"!0)3422, Vc

2
"G

!0)2849

1

0)2849

1 H, stable subspace, (25)

jc
3
"0)3183, Vc

3
"G

!3)6037

!1

!3)6037

1 H, unstable subspace, (26)

jc
4
"!0)3183, Vc

4
"G

5)7692

!1

5)7692

1 H, stable subspace, (27)

Equilibrium 3:

(jc
1,2

)2"!0)003473, center subspace, (28)

(jc
3,4

)2"!0)00527, center subspace. (29)

In conclusion, the stability characteristic of Equilibrium 1 is similar to the stability of
the unique equilibrium of the original model (Section 2) : both "xed points have one
positive eigenvalue, one negative eigenvalue and two conjugate imaginary eigenvalues.
The unstable subspace consists of the asymmetric divergent mode, while the asymmetric
convergent mode characterizes the stable subspace. The center subspace is spanned by
two symmetric modes. Equilibrium 2 has two unstable eigenspaces, spanned by the
asymmetric divergent mode and the symmetric divergent mode, and two stable eigenspaces
spanned by the asymmetric convergent and symmetric convergent modes. Finally, all the
eigenvalues of Equilibrium 3 are imaginary. Here, both the stable and unstable eigenspaces
disappear and the center subspace is four-dimensional. The existence of the third equilib-
rium shows that a small control vortex couple can (neutrally) stabilize a symmetric bubble.

The stability analysis has been performed with all the parameter values, x
c
, y

c
, C

c
and

C given in Table 1.
In all these cases, the stability properties of the control model are qualitatively the same

as those previously described, that is the equilibria located on Curves 1 and 2 are found to
be unstable while the equilibria of Curve 3 are neutrally stable. The existence of a neutrally
stable equilibrium is robust in the sense that it is valid for a wide range of parameters in the
model.

These stability features of the control model are con"rmed by the following numerical
integration of equations (4) and (5).



TABLE 1

Parameter values used for the integration of the
control model

(x
0
, y

0
) C

0
/2n C/2n

(2)908, 1)375) 0)048 1)6
(2)908, 1)375) 0)096 1)6
(4)908, 1)375) 0)048 1)6
(2)908, 1)375) 0)03 2
(2)908, 1)375) 0)05 2
(4)294, 2)031) 0)03 1)6
(4)294, 2)031) 0.03 2
(4)294, 2)031) 0)03 3
(4)294, 2)031) 0)03 4
(4)294, 2)031) 0)03 5
(5)392, 1)35) 0)03 1
(5)392, 1)35) 0)03 2
(5)392, 1)35) 0)03 3
(5)392, 1)35) 0)03 4
(5)392, 1)35) 0.03 5
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4.2. INTEGRATION OF THE CONTROL MODEL

In order to illustrate the existence of the equilibria, their stability and the role they play in
the solutions of the (non-linear) model, we integrate the ordinary di!erential equations (4)
and (5), starting with various initial conditions. The numerical simulations are performed by
means of a fourth-order Runge}Kutta integration method used with double precision.
In the simulations, we have chosen the parameter values (x

0
, y

0
)"(2)908, 1)375),

C
0
/2n"0)048 and C/2n"1)6 for the location, the circulation of the control vortices and

the circulation of the twin vortices, respectively. Note that the linear stability analysis has
also been performed for these parameter values (see Section 4.1 and Table 1).

4.2.1. Dynamics in the symmetric subspace

Figure 7(a) shows the trajectories obtained with initial conditions consisting of symmetric
perturbations to the equilibria. One can clearly see, in this symmetric subspace, that
Equilibria 1 and 3 are centers while Equilibrium 2 is a saddle point stable to symmetric
convergent perturbations and unstable to symmetric divergent perturbations. These stabil-
ity features coincide with our previous theoretical analysis. Starting with an initial condi-
tion close to Equilibrium 2 also shows the existence of a homoclinic cycle connecting the
saddle to itself and wondering around the two centers. The remaining trajectories are limit
cycles wandering around each center or around the homoclinic cycle. Figure 7(b) con"rms
this picture by providing a zoom of the top-half of Figure 7(a).

4.2.2. Dynamics in the full space

Our linear stability analysis has shown that Equilibria 1 and 2 are unstable to some
asymmetric perturbations and Equilibrium 3 is neutrally stable to all kinds of perturba-
tions. This is corroborated by integrating the original non-linear equations and by comput-
ing the trajectory of the vortices. The latter which are given small asymmetric perturbations
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from the various individual equilibria are displayed in Figure 7(c,d,e). While it is clear
that the asymmetric perturbations are ampli"ed immediately for Equilibria 1 and 2
[Figure 7(c,d)], the trajectories of Equilibrium 3 remains in a bounded area as shown in
Figure 7(e). In the latter case, detailed observation of the latter trajectories shows the
asymmetry of the vortices at all times.

The numerical integration of the control model thus con"rms the results of our linear
stability analysis. One of the most interesting features of the control model is that it
generates new equilibrium points, one of which is neutrally stable. Whether a pair of small
control vortices can indeed suppress the instability and make a new symmetric bubble
stable in the numerically simulated #ow is the subject of the next section.

5. NUMERICAL SIMULATIONS OF CONTROLLED FLOWS

The stability analysis of the control vortex model reported in the last section suggests that
we may be able to control the wake instability in the real #ow by inserting a pair of small
symmetric vortices in the #ow. In order to pursue this approach, we now carry out two-
dimensional numerical simulations of wake #ows in the presence of control vortices which
play the role of a forcing in the Navier}Stokes equations.

5.1. CONTROL OF THE ONSET OF VORTEX SHEDDING AT Re"100

We "rst investigate whether it is possible to prevent vortex shedding from occurring in the
transient #ow. For this, we run our code at Re"100. The transient #ow consists of
a growing symmetric recirculating bubble of counter-rotating vortices. Under natural
conditions, this bubble undergoes a symmetry-breaking instability and evolves toward
a Karman vortex street. During the instability events, both the drag and the lift start
oscillating, and the drag jumps abruptly to a higher value. In the present computation, the
#ow is still a recirculating bubble at time t"350. Shortly after this (at time t"350)01), we
introduce two control vortices u

c
"$0)2 at locations x

c
"4)294, y

c
"$2)031.

Figure 8 displays both the natural evolution of the #ow to vortex shedding (left column) and
the evolution of the recirculating bubble to another bubble #ow under the e!ect of the
control vortices (right column). One clearly observes that the region of strong vorticity in
the original bubble is concentrated near the body, while it is more elongated in the
controlled #ow (right column, compare t"350.02 with t"500).

Figure 9 displays the drag and lift coe$cients of the #ow in both the uncontrolled case
and in the controlled situation. In the uncontrolled #ow, Figure 9(a), the drag and the lift
start oscillating as the recirculating bubble undergoes the instability, and the drag jumps to
a higher value. Here, Algorithm 1 [equation (2)] and Algorithm 2 [equation (3)] of
Section 3.1 lead to the same results. In the case of the control, we can compute two types of
forces: the forces acting on the body itself via Algorithm 1, and the forces acting on the full
system including both the body and the control vortices via Algorithm 2. The selection of
a speci"c control volume does not a!ect our drag and lift results provided that cv is located
in a well-resolved area of our computational domain. The forces acting on the body are
displayed in Figure 9(b). The "rst remark is that the force no longer oscillates under the
e!ect of the control. Instead, both the lift and the drag reach constant values after a short
transient owing to the steadiness of the asymptotic controlled #ow. While the lift remains
zero throughout the computation (due to the fact that the #ow never loses its re#ection
symmetry through the mid-plane), the drag increases to a constant value slightly higher
than the mean drag value of the vortex shedding. Figure 9(c) presents the body force acting
on the system. As in Figure 9(b), the lift remains zero at all times. The drag, however,



Figure 8. Control of the onset of vortex shedding by insertion of two small control vortices
(u

c
"0)2) at the location x

c
"4)294, y

c
"$2)031 at Re"100, at time t"350)01. (a) The #ow is

visualized by means of vorticity contours. (a) Flow without control, showing the instability of the
recirculating bubble; (b) #ow with control, showing that the asymptotic state is a symmetric bubble

di!erent from the natural bubble (such as that displayed at t"350 in the uncontrolled case).
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undergoes a dramatic drop due to the insertion of the control vortices in the #ow. After the
drop, the drag increases to reach its asymptotic, slightly negative value, showing that the full
system experiences weak propulsion. The decrease of the drag acting on the full system can
be understood from the relation between the body force and the vorticity distribution in the
whole domain:

F
b
"!

d

dt PP
&-6*$

udx dy



Figure 9. Time history of the force coe$cients of the uncontrolled and controlled #ows of Figure 8:
drag coe$cient (solid line), lift coe$cient (dashed line). (a) Force coe$cients on the body in the
uncontrolled #ow, (b) force coe$cients on the body in the controlled #ow, (c) force coe$cients on the

full system (containing both the cylinder and the control vortices) in the controlled #ow.
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"

d

dtPP
&-6*$

x]xdxdy

"

d

dtPP
&-6*$

(!uyi#uxj) dxdy. (30)

Here, i denotes the direction of the oncoming #ow. It is clear from equation (30) that the
drag depends only on the time derivative of the integral of !uy over the whole #ow "eld.
The introduction of new positive (or negative) vorticity at a positive (or negative) y-location
decreases the drag. The insertion of the control vortices has no contribution to the lift due to
the fact that the e!ects of the control vortices (of vorticity u and !u) cancel each other
since they are introduced at the same x-location. The insertion of new vorticity in the #ow
can thus play a major role in drag-reduction strategies.

5.2. CONTROL OF VORTEX SHEDDING AT Re"100

We now investigate whether the control technique can destabilize vortex shedding itself
after the latter has settled. The #ow is the same as that previously described but now we
insert the previous control vortices at a much later time (t"550)01), more precisely after the
Karman vortex street has settled. Figure 10 shows that our control strategy has a signi"cant
e!ect on the #ow which is now attracted to an asymptotic stable state consisting of
a symmetric bubble. The latter is very similar to that previously obtained by controlling the
onset of vortex shedding.

Figure 11 displays the corresponding force coe$cients. The lift on both the body and the
system decays to zero in the presence of the control. The drag on the body slightly increases,
while the drag on the system undergoes a signi"cant decrease. As before, the drag value of
the asymptotic solution is slightly negative. It is interesting to note that the drag coe$cient
(on the body) of the asymptotic bubble is C2

d
"1)402 while that obtained by controlling the

onset of vortex shedding is C1
d
"1)401. The very small relative error between these two

values (\10~3) con"rms the fact that the two asymptotic solutions of Figure 8 (right
column) and Figure 10 are the same. This solution constitutes an attractor for the
controlled #ow whether the initial condition is the recirculating bubble or the Karman
vortex street.

5.3. CONTROL OF VORTEX SHEDDING AT Re"1000

We now investigate whether our control strategy still works at higher Reynolds numbers.
For this, we consider Re"1000. Figure 12 shows the natural vortex shedding, and the
evolution of the #ow after insertion of the control [u

c
"$0)8, at the location

(x
c
, y

c
)"(2)908, $1)375)]. It is interesting to note that soon after the control is turned on,

the vortex generated near the body in the upper mid-plane stretches downward as it
interacts with the upper control vortex. This stretching process ends by a shedding of this
vortex in the lower mid-plane. Likewise, the vortex generated near the body in the lower
mid-plane stretches upward before being shed in the upper mid-plane. This dynamics results
in a reversed Karman vortex street. The asymmetric bubble consisting of a small vortex and
a large one gradually deforms into a symmetric bubble of two counter-rotating vortices of
the same size. In the mean time, the intensity of the far wake dynamics decays. It is
interesting to concentrate on the "nal evolution of the asymptotic bubble [see Figure 12(b)].
While large values of vorticity are concentrated in the inner part of the bubble at time



Figure 10. Suppression of vortex shedding by insertion of the same small control vortices as in
Figure 8. At time t"550, the #ow is in its natural vortex shedding state. The control vortices are
inserted in the #ow at time t"550)01. The #ow is visualized by means of vorticity contours at various

times. The stable asymptotic bubble is very similar to that obtained in Figure 8.
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Figure 11. Time history of the force coe$cients (a) on the body, (b) on the full system:**, drag
coe$cient; } } }, lift coe$cient.
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t"265, this vorticity decays at later times. At time t"360, high concentrations of vorticity
can be found in the shear layers only.

The time history of the force coe$cients can be observed in Figure 13. Under the
in#uence of the control, the lift and drag "rst oscillate during the transient #ow, particularly
the reversed Karman vortex street. The frequency characteristic of the reversed Karman
vortex street is similar to the frequency of the natural vortex shedding. This is consistent
with the fact that the reversal of the street originates in the interaction between the shed
vortices and the control vortices, and not in the manner the vortices are shed from the body.
The lift then decays to zero, while the drag on the body tends to a constant value smaller
than the average drag value of the natural vortex shedding. As before, the drag on the
system containing both the body and the control vortices decays signi"cantly. The asymp-
totic negative value is an indicator that propulsion on the full system takes place.

Although the e!ect of the control persists as the strength and location of the perturbation
varies, it is clear that it becomes weaker as the strength of the control vortices decreases. We



Figure 13. Time history of the force coe$cients for the #ow visualized in Figure 12: (a) lift
coe$cient on the body; (b) lift coe$cient on the full system; (c) drag coe$cient on the body; (d) drag

coe$cient on the full system.
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now introduce the same vorticity in the #ow at the same location as before, but with a half
vorticity value, that is u

c
"0)4. In this case, the natural Karman vortex street gets deformed

into a reversed Karman vortex street through the same physical phenomena as those
previously observed in Figure 12. The #ow, however, is not attracted to a stable steady state.
Fig. 14 visualizes the transient #ow at various times and Figure 15 displays the correspond-
ing force coe$cients. After insertion of the control vortices, the force still oscillates at the
same frequency as before the introduction of the control but the amplitude of the oscilla-
tions is smaller.

The introduction of the control vortices (u
c
"$0)8) further downstream (at the

location (x
c
"3)912, y

c
"$1)346)) than in the original experiment has also a weaker

e!ect on the #ow as expected. The results are gathered in Figures 16 and 17. In this case,
as in the previous one, a reversed Karman vortex street, responsible for asympto-
tic oscillations of the force coe$cients, is obtained. The width of the wake, together
with the amplitude of the oscillations, seem to be larger than that observed in Figures 15
and 16.



Figure 15. Time history of the force coe$cients for the #ow visualized in Figure 14: (a) lift
coe$cient on the body; (b) lift coe$cient on the full system; (c) drag coe$cient on the body; (d) drag

coe$cient on the full system.
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6. CONCLUSIONS

In this paper, we have developed a #ow control approach for the manipulation of the wake
#ow past a circular cylinder above the critical Reynolds number. Our control strategy was
inspired by the stability analysis of the low-dimensional point vortex model originally
derived by FoK ppl. In the model, the instability of the twin vortices was controlled by
introducing an additional pair of point vortices, referred to as control vortices, for which the
circulation is kept small compared with the circulation of the twin vortices. The insertion of
extra point vortices generates additional steady (symmetric) bubble solutions, one of which
being neutrally stable (rather than unstable). The insertion of additional sources of vorticity
was also found to be e$cient in controlling the viscous #ow. In the latter case, the
vortex-shedding regime never develops if additional (control) vorticity is inserted in the #ow
before symmetry breaking occurs. We have also shown that our control strategy destabil-
izes the Karman vortex street, making the #ow converge toward a steady, stable bubble
solution. In two dimensions, this technique was found to work at small Reynolds number
(Re"100) and at relatively high Reynolds number (Re"1000). In the case of a weaker
control (the vorticity of the control vortices is smaller or the control vortices are located
farther downstream), the Karman vortex street is reversed.



Figure 17. Time history of the force coe$cients on the cylinder: (a) lift coe$cient on the body; (b)
drag coe$cient on the system; (c) drag coe$cient on the body; (d) drag coe$cient on the system.

466 S. TANG AND N. AUBRY
One may wonder how small the strength of the control vortices in the viscous #ow is,
compared to that of the twin vortices. In order to address this issue, we consider the
asymptotic controlled bubble #ow. Since this state is symmetric by re#ection through the
centerline, our estimate is restricted to the upper half-plane only. We "rst determine
the point located on the surface of the body such that the vorticity is zero (separation point).
This point de"nes a separation angle with the centerline. We then consider the portion P of
the wake located within the separation angle. In this part of the domain, we associate all
negative vorticity with the twin vortex, and all positive vorticity with the control vortex. In
each vortex, we then determine the maximal vorticity value (in absolute value) which we
denote Dut

.!9
D for the twin vortex, and Duc

.!9
D for the control vortex. We then compute the

circulation corresponding to all negative vorticity such that DuD'0)1Dut
.!9

D for all points in P.
This gives us an estimate of the circulation characteristic of the upper twin vortex, C

t
. In

order to estimate the circulation associated with the control vortex, C
c
, we proceed in the

same manner and compute the circulation corresponding to all positive vorticity such that
DuD'0)1Duc

.!9
D. For the controlled bubble obtained at Re"100, we "nd that C

t
"8.79 and

C
c
"0)25, thus leading to a ratio C

c
/C

t
"0)028. For the controlled bubble obtained at

Re"1000, we obtain C
t
"10)75 and C

c
"1)11, thus leading to a ratio C

c
/C

t
"0)10. It is

clear that we have not optimized our control technique. Particularly at Re"1000, it should
be possible to decrease the ratio C

c
/C

t
below 10%.
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Despite the similarity between the stability characteristic of the potential model and that
of the viscous #ow, we refrain ourselves from extending our comparison between the model
and the numerically simulated #ow further. In particular, it is well-known that the vortices
present in the viscous #ow are very di!erent from point vortices. It is, however, somewhat
intriguing that the neutrally stable equilibrium of the controlled model is located farther
downstream than the unstable equilibria. This qualitative feature persists in the viscous #ow
in the sense that the asymptotic controlled bubble #ow has most of its vorticity concen-
trated in the shear layers. This high concentration of vorticity thus extends farther down-
stream than in the uncontrolled bubble. This discrepancy between the naturally growing
bubble and the asymptotic controlled bubble can be clearly observed in Figure 18 which
shows the asymptotic #ow of Figure 13 in a slightly di!erent manner.

Obviously, there is a need for investigating whether the e$ciency of the control tech-
nique developed in this paper will persist in three-dimensional simulations, as well as in
experiments, particularly at high Reynolds numbers (Re'180 or so) at which the #ow is
known to be three-dimensional. This question will be addressed in future work. In practice,
the vortex generator could be a small airfoil or a small rotating cylinder. In any case, the
e$ciency of the presence of small vortices in controlling the #ow has shown how a small
local change can have major global consequences on wake #ows.
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Figure 12. Suppression of vortex shedding by insertion of two small control vortices (u
c
"0)8) at

the location x
c
"2)908, y

c
"$1)375 at Re"1000. At time t"210, the #ow is in its natural

vortex-shedding state. The control vortices are inserted in the #ow at time t"210)01. The #ow is
visualized by means of vorticity contours at various times: (a) visualizations of the #ow showing the
evolution of the Karman vortex street; (b) visualizations of the #ow showing the late evolution of the

bubble toward its asymptotic state.



Figure 12 (Continued).



Figure 14. Alteration of vortex shedding by insertion of two small control vortices (u
c
"0)4) at the

location x
c
"2)908, y

c
"$1)375 at Re"1000. The control vortices are inserted in the #ow at the

same time as in Figure 12. The #ow is visualized by means of vorticity contours at various times. The
asymptotic state of the #ow is a reversed Karman vortex street.



Figure 16. Alteration of vortex shedding by insertion of two small control vortices (u
c
"0)8) at the

location x
c
"3)912, y

c
"$1)346 at Re"1000. As in Figures 12 and 14, the control vortices are

inserted in the #ow at time t"210)01. The #ow is visualized by means of vorticity contours at various
times. As in Figure 14, the asymptotic state is a reversed Karman vortex street.



Figure 18. Regions of positive and negative vorticity for the #ow displayed in Figure 12(b) at time
t"360: (a)DuD51)5; (b) DuD52)0.



Figure 18 (Continued).
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